The Player class
The features of the agents are defined within class Player: the prior Gaussian distribution characterized by the mean (mu) and the standard deviation (sigma), the standard deviation of the performance (beta), and the dynamic uncertainty of the skill (gamma).
TrueSkillThroughTime.Player — TypeThe Player class is used to define the features of the agents. We can create objects by indicating the parameters in order or by mentioning their names.
Player(prior::Gaussian=Gaussian(MU,SIGMA), beta::Float64=BETA, gamma::Float64=GAMMA)
Player(;prior::Gaussian=Gaussian(MU,SIGMA), beta::Float64=BETA, gamma::Float64=GAMMA)prioris the prior belief distribution of skill hypothesesbetais the standar deviation of the agent performancegammais the uncertainty (standar deviation) added to the estimates as time progresses
The default value of MU, SIGMA, BETA and GAMMA are
julia> a1 = ttt.Player()Player(Gaussian(mu=0.0, sigma=6.0), beta=1.0, gamma=0.03)
julia> a2 = ttt.Player(ttt.Gaussian(0.0, 1.0))Player(Gaussian(mu=0.0, sigma=1.0), beta=1.0, gamma=0.03)
We can also create special players who have non-random performances (beta=0.0), and whose skills do not change over time (gamma=0.0).
julia> a3 = ttt.Player(beta=0.0, gamma=0.0)Player(Gaussian(mu=0.0, sigma=6.0), beta=0.0, gamma=0.0)julia> a3.beta0.0julia> a3.gamma0.0
Performance
The performances $p$ are random variables around their unknown true skill $s$,
$p \sim \mathcal{N}(s,\beta^2)$
TrueSkillThroughTime.performance — Methodperformance(R::Player)julia> ttt.performance(a2)Gaussian(mu=0.0, sigma=1.414214)julia> ttt.performance(a3)Gaussian(mu=0.0, sigma=6.0)