

Evidence in favor of a scientific theory With great complexity comes great honesty

Gustavo Landfried @GALandfried ¥

MSc in Anthropological Sciences PhD student in Computer Sciences

Why Bayesian inference?

Allows us to optimally update a priori beliefs given a model and data.

Where comes from?

	Not infected	Infected	
Not vaccinated	4	2	6
Vaccinated	76	18	94
	80	20	100

From conditional probability

Bayesian inference

Where comes from?

	Not infected	Infected	
Not vaccinated	4	2	6
Vaccinated	76	18	94
	80	20	100

From conditional probability

 $P(\mathsf{Not infected}|\mathsf{Vaccinated}) = \frac{P(\mathsf{Vaccinated} \cap \mathsf{Not infected})}{P(\mathsf{Vaccinated})}$

Where comes from?

	Not infected	Infected	
Not vaccinated	4	2	6
Vaccinated	76	18	94
	80	20	100

From conditional probability

$$P(\mathsf{Not infected} | \mathsf{Vaccinated}) = \frac{P(\mathsf{Vaccinated} \cap \mathsf{Not infected})}{P(\mathsf{Vaccinated})}$$

Bayes theorem:

$$P(A_1|B_1) = \frac{P(B_1 \cap A_1)}{P(B_1)} = \frac{P(B_1|A_1)P(A_1)}{P(B_1)}$$
(1)

Scientific test example

Scientific test example

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

└─Scientific test example

Scientific test example

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.

• P(positive|mortal) = 0.01

└─Scientific test example

Scientific test example

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.

• P(positive|mortal) = 0.01

We know that zombies are only 0.1% of the population.

• $P(\mathsf{zombie}) = 0.001$

└─Scientific test example

Scientific test example

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.

• P(positive|mortal) = 0.01

We know that zombies are only 0.1% of the population.

• $P(\mathsf{zombie}) = 0.001$

Someone receive a positive test:

└─Scientific test example

Scientific test example

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.

• P(positive|mortal) = 0.01

We know that zombies are only 0.1% of the population.

• $P(\mathsf{zombie}) = 0.001$

Someone receive a positive test: She has **only 8.7% chance** to actually be a zombie!?

 $P(\mathsf{zombie}|\mathsf{positive}) = \frac{P(\mathsf{positive}|\mathsf{zombie})P(\mathsf{zombie})}{P(\mathsf{positive})}$

└─Scientific test example

Scientific test example

There is a test that correctly detects zombies 95% of the time.

• P(positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.

• P(positive|mortal) = 0.01

We know that zombies are only 0.1% of the population.

• $P(\mathsf{zombie}) = 0.001$

Someone receive a positive test: She has **only 8.7% chance** to actually be a zombie!?

$$P(\text{zombie}|\text{positive}) = \frac{P(\text{positive}|\text{zombie})P(\text{zombie})}{P(\text{positive})}$$

In this example all frequencies were observables

└─ The inferential jump

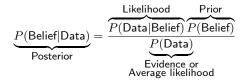
The inferential jump

Bayesian inference is about hidden variables About our **belief distributions** of those hidden variables!

└─ The inferential jump

The inferential jump

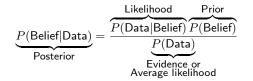
Bayesian inference is about hidden variables About our **belief distributions** of those hidden variables!



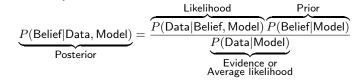
└─ The inferential jump

The inferential jump

Bayesian inference is about hidden variables About our belief distributions of those hidden variables!



A model is always there!



—The inferential jump

• **Prior** belief (distribution):

$$P(B|M) = \frac{1}{\#\mathsf{Beliefs}} \qquad \forall B \in \mathsf{Beliefs}$$

└─ Conditional probability

└─ The inferential jump

• Prior belief (distribution):

$$P(B|M) = \frac{1}{\#\mathsf{Beliefs}} \qquad \forall B \in \mathsf{Beliefs}$$

• Likelihood or ways in which data may have been generated (distribution):

$$P(D|B,M) = \frac{\text{Ways to produce } D \text{ given } B \text{ and } M}{\text{Total ways given } B \text{ and } M} \qquad \forall B \in \text{Beliefs}$$

Conditional probability

└─ The inferential jump

• Prior belief (distribution):

$$P(B|M) = \frac{1}{\#\mathsf{Beliefs}} \qquad \forall B \in \mathsf{Beliefs}$$

• Likelihood or ways in which data may have been generated (distribution):

$$P(D|B,M) = \frac{\text{Ways to produce } D \text{ given } B \text{ and } M}{\text{Total ways given } B \text{ and } M} \qquad \forall B \in \text{Beliefs}$$

• Evidence or Average likelihood (scalar):

$$P(D|M) = \sum_{B \in \mathsf{Beliefs}} \underbrace{P(D|B,M)}_{\mathsf{likelihood}} \underbrace{P(B|M)}_{\mathsf{prior}}$$

Conditional probability

└─ The inferential jump

• **Prior** belief (distribution):

$$P(B|M) = \frac{1}{\#\mathsf{Beliefs}} \qquad \forall B \in \mathsf{Beliefs}$$

• Likelihood or ways in which data may have been generated (distribution):

$$P(D|B,M) = \frac{\text{Ways to produce } D \text{ given } B \text{ and } M}{\text{Total ways given } B \text{ and } M} \qquad \forall B \in \text{Beliefs}$$

• Evidence or Average likelihood (scalar):

$$P(D|M) = \sum_{B \in \text{Beliefs}} \underbrace{P(D|B, M)}_{\text{likelihood}} \underbrace{P(B|M)}_{\text{prior}}$$

• **Posterior** belief (distribution):

$$P(B|D,M) = \frac{P(D|B,M)P(B|M)}{P(D|M)} \quad \forall B \in \mathsf{Beliefs}$$

Conditional probability

└─ The garden of forking paths

The garden of forking paths

To update our beliefs (posterior), we need to consider every possible path in the model that could have lead us to the observed data (likelihood).

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ$, $\bullet \circ \circ \circ$, $\bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ$, $\bullet \bullet \bullet \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$

Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$

Ways given M and B = 0000

(First marbel)

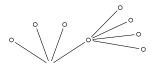
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ$, $\bullet \circ \circ \circ$, $\bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ$, $\bullet \bullet \bullet \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Ways given M and B = 0000 (Section 1.1.1)

(Second marbel)

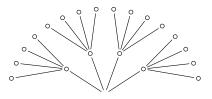
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Ways given M and B = 0000 (S

(Second marbel)

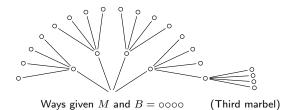
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



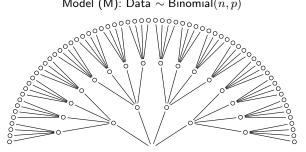
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \bigcirc \bullet$ Beliefs (B): 0000, ●000, ●●00, ●●●0, ●●●

Model (M): Data ~ Binomial(n, p)



Ways given M and B = 0000

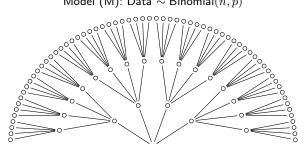
(Third marbel)

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \bigcirc \bullet$ Beliefs (B): 0000, ●000, ●●00, ●●●0, ●●●

Model (M): Data ~ Binomial(n, p)



Ways given M and B = 0000

Belief	Ways to produce $\bullet \circ \bullet$

0000

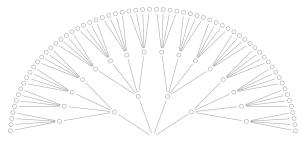
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Ways given M and B = 0000

Belief	Ways to produce $\bullet \circ \bullet$
0000	$0 \times 4 \times 0 = 0$

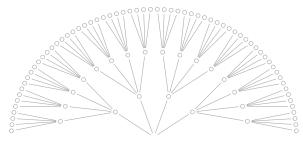
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Ways given M and B = 0000

Belief	Ways to produce $\bullet \circ \bullet$	Likelihood	Prior	Posterior \propto
0000	$0 \times 4 \times 0 = 0$	$\frac{0 \times 4 \times 0}{4 \times 4 \times 4} = \frac{0}{64}$	1/5	$\frac{0}{64}\frac{1}{5}$

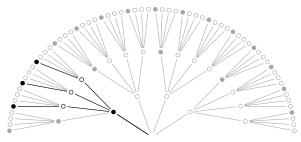
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Ways given M and $B = \bullet \circ \circ \circ$

Belief	Ways to produce $\bullet \circ \bullet$	Likelihood	Prior	Posterior \propto
0000	$0 \times 4 \times 0 = 0$	$\frac{0 \times 4 \times 0}{4 \times 4 \times 4} = \frac{0}{64}$	1/5	$\frac{0}{64}\frac{1}{5}$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64}\frac{1}{5}$

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Ways given M and $B = \bullet \bullet \circ \circ$

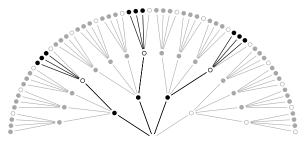
Belief	Ways to produce $\bullet \circ \bullet$	Likelihood	Prior	Posterior \propto
0000	$0 \times 4 \times 0 = 0$	$\frac{0 \times 4 \times 0}{4 \times 4 \times 4} = \frac{0}{64}$	1/5	$\frac{0}{64}\frac{1}{5}$
● 000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64}\frac{1}{5}$
●●○○	$2 \times 2 \times 2 = 8$	8/64	1/5	$\frac{8}{64}\frac{1}{5}$

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Belief	Ways to produce $\bullet \circ \bullet$	Likelihood	Prior	Posterior \propto
0000	$0 \times 4 \times 0 = 0$	$\frac{0 \times 4 \times 0}{4 \times 4 \times 4} = \frac{0}{64}$	1/5	$\frac{0}{64}\frac{1}{5}$
•000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64}\frac{1}{5}$
••00	$2 \times 2 \times 2 = 8$	8/64	1/5	$\frac{8}{64}\frac{1}{5}$
•••0	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64}\frac{1}{5}$

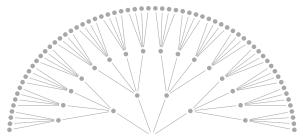
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Belief	Ways to produce $\bullet \circ \bullet$	Likelihood	Prior	Posterior \propto
0000	$0 \times 4 \times 0 = 0$	$\frac{0 \times 4 \times 0}{4 \times 4 \times 4} = \frac{0}{64}$	1/5	$\frac{0}{64}\frac{1}{5}$
•000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64}\frac{1}{5}$
••00	$2 \times 2 \times 2 = 8$	8/64	1/5	$\frac{8}{64}\frac{1}{5}$
•••0	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64}\frac{1}{5}$
••••	$4 \times 0 \times 4 = 0$	0/64	1/5	$\frac{0}{64}\frac{1}{5}$

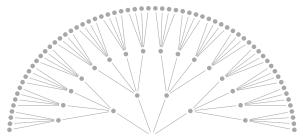
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Belief	Ways to produce $\bullet \circ \bullet$	Likelihood	Prior	Posterior \propto
0000	$0 \times 4 \times 0 = 0$	$\frac{0 \times 4 \times 0}{4 \times 4 \times 4} = \frac{0}{64}$	1/5	$\frac{0}{64}\frac{1}{5}$
● 000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64}\frac{1}{5}$
●● 00	$2\times 2\times 2=8$	8/64	1/5	$\frac{8}{64}\frac{1}{5}$
•••0	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64}\frac{1}{5}$
••••	$4 \times 0 \times 4 = 0$	0/64	1/5	$\frac{0}{64}\frac{1}{5}$
				P(D M)

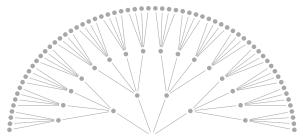
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Belief	Ways to produce $\bullet \circ \bullet$	Likelihood	Prior	Posterior \propto
0000	$0 \times 4 \times 0 = 0$	$\frac{0 \times 4 \times 0}{4 \times 4 \times 4} = \frac{0}{64}$	1/5	$\frac{0}{64}\frac{1}{5}$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64}\frac{1}{5}$
●● ○○	$2\times 2\times 2=8$	8/64	1/5	$\frac{8}{64}\frac{1}{5}$
$\bullet \bullet \bullet \circ$	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64}\frac{1}{5}$
••••	$4 \times 0 \times 4 = 0$	0/64	1/5	$\frac{0}{64}\frac{1}{5}$
				$\frac{3+8+9}{64\cdot 5}$

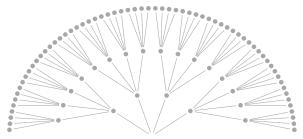
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Belief	Ways to produce $\bullet \circ \bullet$	Likelihood	Prior	Posterior \propto	Posterior
0000	$0 \times 4 \times 0 = 0$	$\frac{0 \times 4 \times 0}{4 \times 4 \times 4} = \frac{0}{64}$	1/5	$\frac{0}{64}\frac{1}{5}$	$\frac{0}{64}$ $\frac{1}{5}$ $\frac{64 \cdot 5}{3+8+9}$
● 000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64}\frac{1}{5}$	
●● ○○	$2\times 2\times 2=8$	8/64	1/5	$\frac{8}{64}\frac{1}{5}$	
•••0	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64}\frac{1}{5}$	
••••	$4 \times 0 \times 4 = 0$	0/64	1/5	$\frac{0}{64}\frac{1}{5}$	
				$\frac{3+8+9}{64\cdot 5}$	

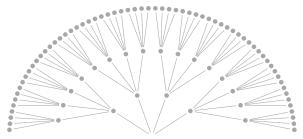
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Belief	Ways to produce $\bullet \circ \bullet$	Likelihood	Prior	Posterior \propto	Posterior
0000	$0 \times 4 \times 0 = 0$	$\frac{0 \times 4 \times 0}{4 \times 4 \times 4} = \frac{0}{64}$	1/5	$\frac{0}{64}\frac{1}{5}$	$\frac{0}{3+8+9} = 0.00$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64}\frac{1}{5}$	
●●○○	$2 \times 2 \times 2 = 8$	8/64	1/5	$\frac{8}{64}\frac{1}{5}$	
$\bullet \bullet \bullet \circ$	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64}\frac{1}{5}$	
	$4 \times 0 \times 4 = 0$	0/64	1/5	$\frac{0}{64}\frac{1}{5}$	
				$\frac{3+8+9}{64\cdot 5}$	

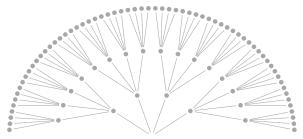
Conditional probability

└─ The garden of forking paths

The garden of forking paths

Data (D): $\bullet \circ \bullet$ Beliefs (B): $\circ \circ \circ \circ \circ$, $\bullet \circ \circ \circ \circ$, $\bullet \bullet \circ \circ \circ$, $\bullet \bullet \bullet \circ \circ$, $\bullet \bullet \bullet \circ \circ$

Model (M): Data $\sim \text{Binomial}(n, p)$



Ways given M and $B = \bullet \bullet \bullet \bullet$

Belief	Ways to produce $\bullet \circ \bullet$	Likelihood	Prior	Posterior \propto	Posterior
0000	$0 \times 4 \times 0 = 0$	$\frac{0 \times 4 \times 0}{4 \times 4 \times 4} = \frac{0}{64}$	1/5	$\frac{0}{64}\frac{1}{5}$	$\frac{0}{3+8+9} = 0.00$
●000	$1 \times 3 \times 1 = 3$	3/64	1/5	$\frac{3}{64}\frac{1}{5}$	$\frac{3}{3+8+9} = 0.15$
●● ○○	$2\times 2\times 2=8$	8/64	1/5	$\frac{8}{64}\frac{1}{5}$	$\frac{8}{3+8+9} = 0.40$
$\bullet \bullet \bullet \circ$	$3 \times 1 \times 3 = 9$	9/64	1/5	$\frac{9}{64}\frac{1}{5}$	$\frac{9}{3+8+9} = 0.45$
••••	$4 \times 0 \times 4 = 0$	0/64	1/5	$\frac{0}{64}\frac{1}{5}$	$\frac{0}{3+8+9} = 0.00$
				$\frac{3+8+9}{64\cdot 5}$	

Conditional probability

└─ The garden of (continuous) forking paths

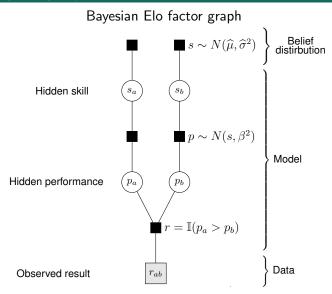
Bayesian skill estimator

How to estimate skill of players?

Arpad Elo

Bayesian inference

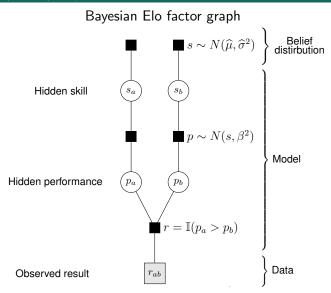
Conditional probability



Bayesian inference

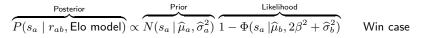
Conditional probability

└─ The garden of (continuous) forking paths

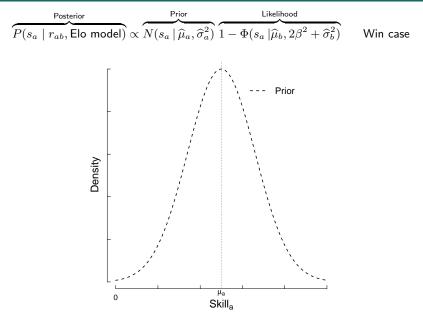


The factor graphs specifies the way to compute the posterior, likelihood, and evidence. Kschischang FR, Frey BJ, Loeliger HA. Factor graphs and the sum-product algorithm. 2001

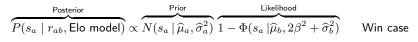
Conditional probability

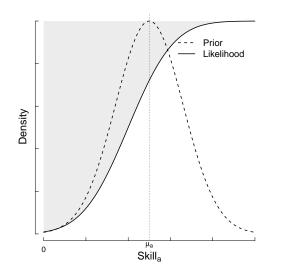


Conditional probability

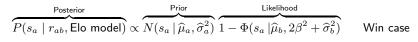


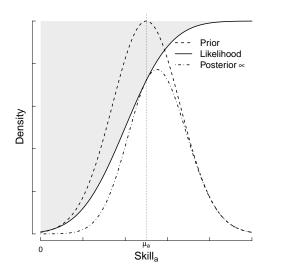
Conditional probability



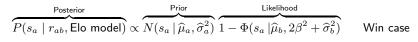


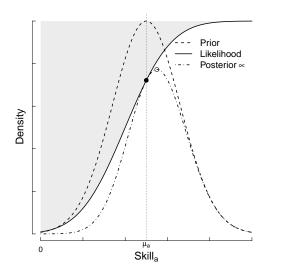
Conditional probability



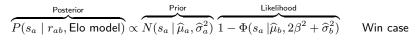


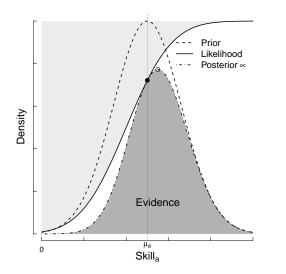
Conditional probability





Conditional probability

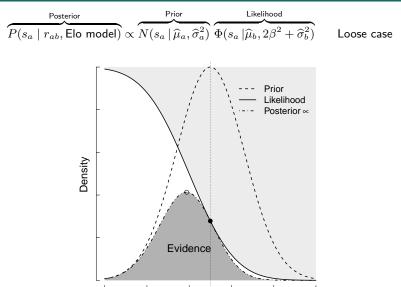




Conditional probability

The garden of (continuous) forking paths

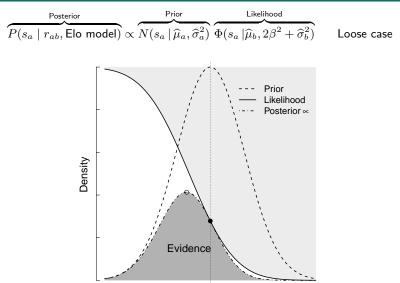
0



μ_a Skill_a

Conditional probability

└─ The garden of (continuous) forking paths



For a detailed demostration, see Landfried. TrueSkill: Technical Report. 2019

0

μ_a

Skilla

Bayesian model inference

• Which are our beliefs about different hidden models M?

Bayesian model inference

• Which are our beliefs about different hidden models M?

$$P(M_k|D) = \frac{P(D|M_k)P(M_k)}{\sum_{i=1}^{n} P(D|M_i)P(M_i)}$$

Bayesian model inference

• Which are our beliefs about different hidden models M?

$$P(M_k|D) = \frac{P(D|M_k)P(M_k)}{\sum_{i=1}^{n} P(D|M_i)P(M_i)}$$

•To compare models we can compute their ratio probability,

Bayesian model inference

• Which are our beliefs about different hidden models M?

$$P(M_k|D) = \frac{P(D|M_k)P(M_k)}{\sum_{i=1}^{n} P(D|M_i)P(M_i)}$$

•To compare models we can compute their ratio probability,

Bayes factor
$$(q, r) = \frac{P(M_q|D)}{P(M_r|D)} = \frac{P(D|M_q)P(M_q)}{P(D|M_r)P(M_r)}$$

Bayesian model inference

• Which are our beliefs about different hidden models M?

$$P(M_k|D) = \frac{P(D|M_k)P(M_k)}{\sum_{i=1}^{n} P(D|M_i)P(M_i)}$$

•To compare models we can compute their ratio probability,

Bayes factor
$$(q, r) = \frac{P(M_q|D)}{P(M_r|D)} = \frac{P(D|M_q)P(M_q)}{P(D|M_r)P(M_r)}$$

$$\stackrel{*}{=} \frac{\frac{P(D|M_q)}{P(D|M_r)}}{\underbrace{\frac{P(D|M_q)}{P(D|M_r)}}_{\text{Evidence!}}} * \overset{\text{With no prior preferences}}{\overset{\text{With no prior preferences}$$

Bayesian model inference

• Which are our beliefs about different hidden models M?

$$P(M_k|D) = \frac{P(D|M_k)P(M_k)}{\sum_{i=1}^{n} P(D|M_i)P(M_i)}$$

•To compare models we can compute their ratio probability,

 $P(M_q|D) > P(M_r|D) \iff P(D|M_q) > P(D|M_r)$

Bayesian model inference

• Which are our beliefs about different hidden models M?

$$P(M_k|D) = \frac{P(D|M_k)P(M_k)}{\sum_{i=1}^{n} P(D|M_i)P(M_i)}$$

•To compare models we can compute their ratio probability,

 $P(M_q|D) > P(M_r|D) \iff P(D|M_q) > P(D|M_r)$

All you need is evidence

Bayesian model inference

• Which are our beliefs about different hidden models M?

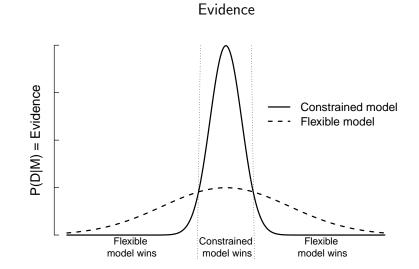
$$P(M_k|D) = \frac{P(D|M_k)P(M_k)}{\sum_{i=1}^{n} P(D|M_i)P(M_i)}$$

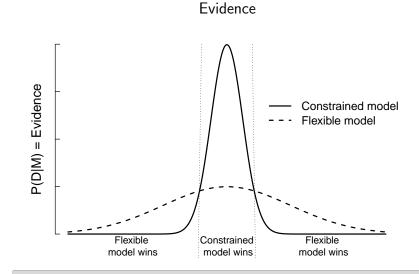
•To compare models we can compute their ratio probability,

 $P(M_q|D) > P(M_r|D) \iff P(D|M_q) > P(D|M_r)$

All you need is evidence

For a dicussion of bayes factor see Kass & Raftery. Bayes factors. 1995.

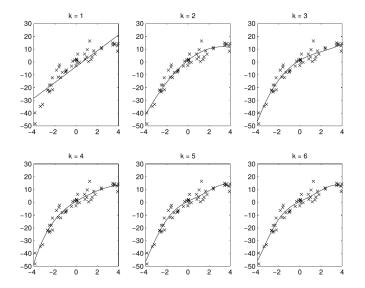




Evience encode a trade-off between complexity and prediction.

— Evidence

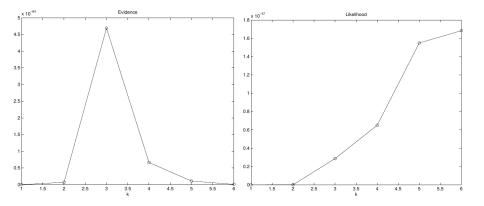
Evidence vs maximum likelihood



Bayesian inference

Evidence

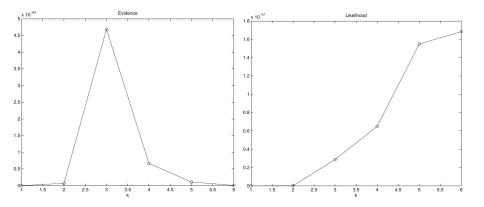
Evidence vs maximum likelihood



Bayesian inference

Evidence

Evidence vs maximum likelihood

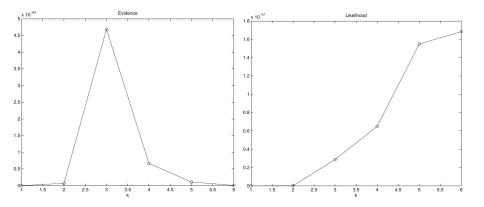


With evidence there is no need for regularization

Bayesian inference

Evidence

Evidence vs maximum likelihood



With evidence there is no need for regularization

For more examples see Tom Minka

Evidence

Why evidence is not widely used in machine learning?

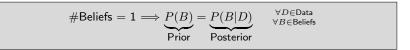
L Evidence

Why evidence is not widely used in machine learning?

First let's take a look at Bayesian no-doubt case

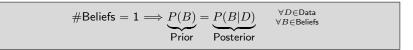
Bayesian no-doubt case

Fixed beliefs, even with infinite new data



Bayesian no-doubt case

Fixed beliefs, even with infinite new data



Likelihood is just the Evidence

#Beliefs = 1 \iff Likelihood = Evidence

Who has no doubt? Who has only one belief?

• God (if exists)

- God (if exists)
- Mathematicians (and other non-empricial sciences)

- God (if exists)
- Mathematicians (and other non-empricial sciences)
- Maybe some extremists

- God (if exists)
- Mathematicians (and other non-empricial sciences)
- Maybe some extremists
- All non-bayesian machine learning

- God (if exists)
- Mathematicians (and other non-empricial sciences)
- Maybe some extremists
- All non-bayesian machine learning (the hacked-belief approach)

Bayesian inference

└─Bayesian no-doubt case

└─ The hacked-belief approach

The hacked-belief approach

The best belief after seeing the data maximum likelihood estimator = $\operatorname*{argmax}_B P(D|B,M) = \widehat{B}$

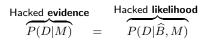
Bayesian inference

Bayesian no-doubt case

└─ The hacked-belief approach

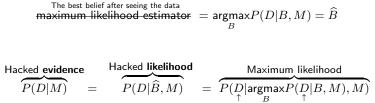
The hacked-belief approach

The best belief after seeing the data maximum likelihood estimator
$$= \operatorname*{argmax}_B P(D|B,M) = \widehat{B}$$



└─ The hacked-belief approach

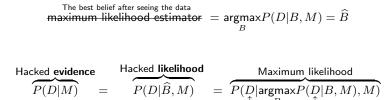
The hacked-belief approach



Data appears back and forth!!

└─ The hacked-belief approach

The hacked-belief approach

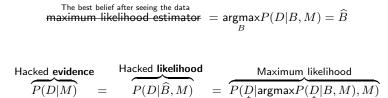


Data appears back and forth!!

Hacked evidence (with MLE) = Maximum likelihood

└─ The hacked-belief approach

The hacked-belief approach



Data appears back and forth!!

Hacked evidence (with MLE) = Maximum likelihood

With great hacked-belief approach comes great overfitting!

Bayesian inference

Bayesian no-doubt case

└─ The hacked-belief approach

With great overfitting comes great regularization!

The best belief after seeing the data maximum a posteriori (estimator) =
$$\underset{B}{\operatorname{argmax}}P(D|B,M)P(B|M) = \widehat{B}$$

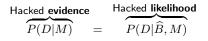
Bayesian inference

Bayesian no-doubt case

└─ The hacked-belief approach

With great overfitting comes great regularization!

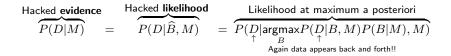
The best belief after seeing the data maximum a posteriori (estimator) =
$$\underset{B}{\operatorname{argmax}}P(D|B,M)P(B|M) = \widehat{B}$$



└─ The hacked-belief approach

With great overfitting comes great regularization!

The best belief after seeing the data
maximum a posteriori (estimator) =
$$\underset{B}{\operatorname{argmax}}P(D|B,M)P(B|M) = \widehat{B}$$



The hacked-belief approach

With great overfitting comes great regularization!

The best belief after seeing the data
maximum a posteriori (estimator) =
$$\underset{B}{\operatorname{argmax}}P(D|B,M)P(B|M) = \widehat{B}$$

$$\underbrace{\begin{array}{l} \text{Hacked evidence} \\ \widehat{P(D|M)} \end{array}}_{P(D|M)} = \underbrace{\begin{array}{l} \text{Hacked likelihood} \\ \widehat{P(D|\widehat{B},M)} \end{array}}_{P(D|\widehat{B},M)} = \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|\text{argmax}P(D|B,M)P(B|M),M)} \\ \underset{Again data appears back and forth!! \end{array}}{} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|\widehat{B},M)} \end{array}}_{Again data appears back and forth!!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth!} \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth } \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth } \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth } \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \\ \widehat{P(D|B,M)} \end{array}}_{Again data appears back and forth } \\ \underbrace{\begin{array}{l} \text{Likelihood at maximum a posteriori} \\ \\ \widehat{P(D|B,M)} \end{array}}_{Again data$$

Hacked evidence (with MAP) = L2 or L1 regularization

└─ The hacked-belief approach

With great overfitting comes great regularization!

The best belief after seeing the data
maximum a posteriori (estimator) =
$$\underset{B}{\operatorname{argmax}}P(D|B,M)P(B|M) = \widehat{B}$$

$$\overbrace{P(D|M)}^{\text{Hacked evidence}} = \overbrace{P(D|\widehat{B}, M)}^{\text{Hacked likelihood}} = \overbrace{P(D|\widehat{B}, M)}^{\text{Likelihood at maximum a posteriori}} = \overbrace{P(D| \operatorname{argmax}_B P(D|B, M) P(B|M), M)}^{\text{Likelihood at maximum a posteriori}}$$

Hacked evidence (with MAP) = L2 or L1 regularization

For more regularization techniques for hacked-belief approach see Zivik talk. With great complexity comes great regularization

└─ The hacked-belief approach

Evidence and data science metrics

The hacked-belief approach

Evidence and data science metrics

Evidence P(D|M)

└─ The hacked-belief approach

Evidence and data science metrics

$$\overbrace{P(D|M)}^{\text{Evidence}} \propto \log P(D|M)$$

└─ The hacked-belief approach

Evidence and data science metrics

$$\overbrace{P(D|M)}^{\text{Evidence}} \propto \log P(D|M) = \log \left(\prod_{i=1}^{|D|} P(D_i|M) \right)$$

└─ The hacked-belief approach

Evidence and data science metrics

$$\underbrace{\widetilde{P(D|M)}}_{P(D|M)} \propto \log P(D|M) = \log \left(\prod_{i=1}^{|D|} P(D_i|M) \right) \\ = \sum_{i=1}^{|D|} \log P(D_i|M)$$

└─ The hacked-belief approach

Evidence and data science metrics

$$\begin{split} \overbrace{P(D|M)}^{\text{Evidence}} \propto \log P(D|M) &= \log \left(\prod_{i=1}^{|D|} P(D_i|M) \right) \\ &= \sum_{i=1}^{|D|} \log P(D_i|M) \\ &\propto \frac{1}{|D|} \sum_{i=1}^{|D|} \log P(D_i|M) \end{split}$$

└─ The hacked-belief approach

Evidence and data science metrics

$$\begin{split} \overbrace{P(D|M)}^{\text{Evidence}} \propto \log P(D|M) &= \log \left(\prod_{i=1}^{|D|} P(D_i|M) \right) \\ &= \sum_{i=1}^{|D|} \log P(D_i|M) \\ &\propto \frac{1}{|D|} \sum_{i=1}^{|D|} \log P(D_i|M) = E_p \left[\log P(D|M) \right] \end{split}$$

└─ The hacked-belief approach

Evidence and data science metrics

$$\begin{split} \overbrace{P(D|M)}^{\text{Evidence}} \propto \log P(D|M) &= \log \left(\prod_{i=1}^{|D|} P(D_i|M) \right) \\ &= \sum_{i=1}^{|D|} \log P(D_i|M) \\ &\propto \frac{1}{|D|} \sum_{i=1}^{|D|} \log P(D_i|M) = E_p \left[\log P(D|M) \right] \\ &= E_p \left[\log q \right] \end{split}$$

└─ The hacked-belief approach

Evidence and data science metrics

$$\begin{split} \overbrace{P(D|M)}^{\text{Evidence}} \propto \log P(D|M) &= \log \left(\prod_{i=1}^{|D|} P(D_i|M) \right) \\ &= \sum_{i=1}^{|D|} \log P(D_i|M) \\ &\propto \frac{1}{|D|} \sum_{i=1}^{|D|} \log P(D_i|M) = E_p \left[\log P(D|M) \right] \\ &= E_p \left[\log q \right] = -\underbrace{H(p,q)}_{\text{Cross entropy}} \end{split}$$

The hacked-belief approach

Evidence and data science metrics

Is there any data science metrics equivalent to evidence?

$$\begin{split} \overbrace{P(D|M)}^{\text{Evidence}} \propto \log P(D|M) &= \log \left(\prod_{i=1}^{|D|} P(D_i|M) \right) \\ &= \sum_{i=1}^{|D|} \log P(D_i|M) \\ &\propto \frac{1}{|D|} \sum_{i=1}^{|D|} \log P(D_i|M) = E_p \left[\log P(D|M) \right] \\ &= E_p \left[\log q \right] = -\underbrace{H(p,q)}_{\text{Cross entropy}} \end{split}$$

Evidence \propto Cross entropy

└─ The hacked-belief approach

Evidence and data science metrics

Is there any data science metrics equivalent to evidence?

$$\begin{split} \overbrace{P(D|M)}^{\text{Evidence}} \propto \log P(D|M) &= \log \left(\prod_{i=1}^{|D|} P(D_i|M) \right) \\ &= \sum_{i=1}^{|D|} \log P(D_i|M) \\ &\propto \frac{1}{|D|} \sum_{i=1}^{|D|} \log P(D_i|M) = E_p \left[\log P(D|M) \right] \\ &= E_p \left[\log q \right] = -\underbrace{H(p,q)}_{\text{Cross entropy}} \end{split}$$

Evidence \propto Cross entropy (at validation data set, if hacked-belief approach)