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Bayesian inference

Allows us to optimally update a priori beliefs
given a model and data.

Why Bayesian inference?



Bayesian inference

Conditional probability

Not infected Infected

Not vaccinated 4 2 6

Vaccinated 76 18 94

80 20 100

From conditional probability

P (Not infected|Vaccinated) =
P (Vaccinated ∩ Not infected)

P (Vaccinated)

Bayes theorem:

P (A1|B1) =
P (B1 ∩A1)

P (B1)
=
P (B1|A1)P (A1)

P (B1)
(1)

Where comes from?
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Bayesian inference

Conditional probability

Scientific test example

There is a test that correctly detects zombies 95% of the time.
• P (positive|zombie) = 0.95

One percent of the time it incorrectly detect normal persons as zombies.
• P (positive|mortal) = 0.01

We know that zombies are only 0.1% of the population.
• P (zombie) = 0.001

Someone receive a positive test:
She has only 8.7% chance to actually be a zombie!?

P (zombie|positive) =
P (positive|zombie)P (zombie)

P (positive)

In this example all frequencies were observables

Scientific test example
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Bayesian inference

Conditional probability

The inferential jump

Bayesian inference is about hidden variables
About our belief distributions of those hidden variables!

P (Belief|Data)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
P (Data|Belief)

Prior︷ ︸︸ ︷
P (Belief)

P (Data)︸ ︷︷ ︸
Evidence or

Average likelihood

A model is always there!

P (Belief|Data,Model)︸ ︷︷ ︸
Posterior

=

Likelihood︷ ︸︸ ︷
P (Data|Belief,Model)

Prior︷ ︸︸ ︷
P (Belief|Model)

P (Data|Model)︸ ︷︷ ︸
Evidence or

Average likelihood

The inferential jump
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Conditional probability

The inferential jump

• Prior belief (distribution):

P (B|M) =
1

#Beliefs
∀B ∈ Beliefs

• Likelihood or ways in which data may have been generated (distribution):

P (D|B,M) =
Ways to produce D given B and M

Total ways given B and M
∀B ∈ Beliefs

• Evidence or Average likelihood (scalar):

P (D|M) =
∑

B∈Beliefs

P (D|B,M)︸ ︷︷ ︸
likelihood

P (B|M)︸ ︷︷ ︸
prior

• Posterior belief (distribution):

P (B|D,M) =
P (D|B,M)P (B|M)

P (D|M)
∀B ∈ Beliefs
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Conditional probability

The garden of forking paths

To update our beliefs (posterior), we need to consider every possible path
in the model that could have lead us to the observed data (likelihood).

The garden of forking paths
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The garden of forking paths

Data (D): Beliefs (B): , , , ,

Model (M): Data ∼ Binomial(n, p)
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Data (D): Beliefs (B): , , , ,
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How to estimate skill of players?

Arpad Elo

Bayesian skill estimator
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1

The factor graphs specifies the way to compute the posterior, likelihood, and evidence.
Kschischang FR, Frey BJ, Loeliger HA. Factor graphs and the sum-product algorithm. 2001

Bayesian Elo factor graph

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=910572
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For a detailed demostration, see Landfried. TrueSkill: Technical Report. 2019

https://journals.plos.org/plosone/article/file?type=supplementary&id=info:doi/10.1371/journal.pone.0211014.s002
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Bayesian model inference

• Which are our beliefs about different hidden models M?

P (Mk|D) =
P (D|Mk)P (Mk)∑n
i=1 P (D|Mi)P (Mi)

•To compare models we can compute their ratio probability,

Bayes factor(q, r) =
P (Mq|D)

P (Mr|D)
=
P (D|Mq)P (Mq)

P (D|Mr)P (Mr)

∗
=
P (D|Mq)

P (D|Mr)︸ ︷︷ ︸
Evidence!

P (Mq|D) > P (Mr|D)
∗⇐⇒ P (D|Mq) > P (D|Mr)

All you need is evidence

Bayesian model inference

∗ With no prior preferences
P (Mq)=P (Mr)
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For a dicussion of bayes factor see Kass & Raftery. Bayes factors. 1995.

http://xyala.cap.ed.ac.uk/teaching/tutorials/phylogenetics/Bayesian_Workshop/PDFs/Kass%20and%20Raftery%201995.pdf
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Evidence

With evidence there is no need for regularization

Evidence vs maximum likelihood

For more examples see Tom Minka

http://alumni.media.mit.edu/~tpminka/statlearn/demo/
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Bayesian inference

Bayesian no-doubt case

Fixed beliefs, even with infinite new data

#Beliefs = 1 =⇒ P (B)︸ ︷︷ ︸
Prior

= P (B|D)︸ ︷︷ ︸
Posterior

∀D∈Data
∀B∈Beliefs

Likelihood is just the Evidence

#Beliefs = 1 ⇐⇒ Likelihood = Evidence

Bayesian no-doubt case



Bayesian inference

Bayesian no-doubt case

Who has no doubt? Who has only one belief?

• God (if exists)

• Mathematicians (and other non-empricial sciences)

• Maybe some extremists

• All non-bayesian machine learning (the hacked-belief approach)



Bayesian inference

Bayesian no-doubt case

Who has no doubt? Who has only one belief?

• God (if exists)

• Mathematicians (and other non-empricial sciences)

• Maybe some extremists

• All non-bayesian machine learning (the hacked-belief approach)



Bayesian inference

Bayesian no-doubt case

Who has no doubt? Who has only one belief?

• God (if exists)

• Mathematicians (and other non-empricial sciences)

• Maybe some extremists

• All non-bayesian machine learning (the hacked-belief approach)



Bayesian inference

Bayesian no-doubt case

Who has no doubt? Who has only one belief?

• God (if exists)

• Mathematicians (and other non-empricial sciences)

• Maybe some extremists

• All non-bayesian machine learning (the hacked-belief approach)



Bayesian inference

Bayesian no-doubt case

Who has no doubt? Who has only one belief?

• God (if exists)

• Mathematicians (and other non-empricial sciences)

• Maybe some extremists

• All non-bayesian machine learning

(the hacked-belief approach)



Bayesian inference

Bayesian no-doubt case

Who has no doubt? Who has only one belief?

• God (if exists)

• Mathematicians (and other non-empricial sciences)

• Maybe some extremists

• All non-bayesian machine learning (the hacked-belief approach)



Bayesian inference

Bayesian no-doubt case

The hacked-belief approach

The best belief after seeing the data

maximum likelihood estimator = argmax
B

P (D|B,M) = B̂

Hacked evidence︷ ︸︸ ︷
P (D|M) =

Hacked likelihood︷ ︸︸ ︷
P (D|B̂,M) =

Maximum likelihood︷ ︸︸ ︷
P (D
↑
|argmax

B
P (D
↑
|B,M),M)

Data appears back and forth!!

Hacked evidence (with MLE) = Maximum likelihood

With great hacked-belief approach comes great overfitting!

The hacked-belief approach



Bayesian inference

Bayesian no-doubt case

The hacked-belief approach

The best belief after seeing the data

maximum likelihood estimator = argmax
B

P (D|B,M) = B̂

Hacked evidence︷ ︸︸ ︷
P (D|M) =

Hacked likelihood︷ ︸︸ ︷
P (D|B̂,M)

=

Maximum likelihood︷ ︸︸ ︷
P (D
↑
|argmax

B
P (D
↑
|B,M),M)

Data appears back and forth!!

Hacked evidence (with MLE) = Maximum likelihood

With great hacked-belief approach comes great overfitting!

The hacked-belief approach



Bayesian inference

Bayesian no-doubt case

The hacked-belief approach

The best belief after seeing the data

maximum likelihood estimator = argmax
B

P (D|B,M) = B̂

Hacked evidence︷ ︸︸ ︷
P (D|M) =

Hacked likelihood︷ ︸︸ ︷
P (D|B̂,M) =

Maximum likelihood︷ ︸︸ ︷
P (D
↑
|argmax

B
P (D
↑
|B,M),M)

Data appears back and forth!!

Hacked evidence (with MLE) = Maximum likelihood

With great hacked-belief approach comes great overfitting!

The hacked-belief approach



Bayesian inference

Bayesian no-doubt case

The hacked-belief approach

The best belief after seeing the data

maximum likelihood estimator = argmax
B

P (D|B,M) = B̂

Hacked evidence︷ ︸︸ ︷
P (D|M) =

Hacked likelihood︷ ︸︸ ︷
P (D|B̂,M) =

Maximum likelihood︷ ︸︸ ︷
P (D
↑
|argmax

B
P (D
↑
|B,M),M)

Data appears back and forth!!

Hacked evidence (with MLE) = Maximum likelihood

With great hacked-belief approach comes great overfitting!

The hacked-belief approach



Bayesian inference

Bayesian no-doubt case

The hacked-belief approach

The best belief after seeing the data

maximum likelihood estimator = argmax
B

P (D|B,M) = B̂

Hacked evidence︷ ︸︸ ︷
P (D|M) =

Hacked likelihood︷ ︸︸ ︷
P (D|B̂,M) =

Maximum likelihood︷ ︸︸ ︷
P (D
↑
|argmax

B
P (D
↑
|B,M),M)

Data appears back and forth!!

Hacked evidence (with MLE) = Maximum likelihood

With great hacked-belief approach comes great overfitting!

The hacked-belief approach



Bayesian inference

Bayesian no-doubt case

The hacked-belief approach

The best belief after seeing the data

maximum a posteriori (estimator) = argmax
B

P (D|B,M)P (B|M) = B̂

Hacked evidence︷ ︸︸ ︷
P (D|M) =

Hacked likelihood︷ ︸︸ ︷
P (D|B̂,M) =

Likelihood at maximum a posteriori︷ ︸︸ ︷
P (D
↑
|argmax

B
P (D
↑
|B,M)P (B|M),M)

Again data appears back and forth!!

Hacked evidence (with MAP) = L2 or L1 regularization

With great overfitting comes great regularization!



Bayesian inference

Bayesian no-doubt case

The hacked-belief approach

The best belief after seeing the data

maximum a posteriori (estimator) = argmax
B

P (D|B,M)P (B|M) = B̂

Hacked evidence︷ ︸︸ ︷
P (D|M) =

Hacked likelihood︷ ︸︸ ︷
P (D|B̂,M)

=

Likelihood at maximum a posteriori︷ ︸︸ ︷
P (D
↑
|argmax

B
P (D
↑
|B,M)P (B|M),M)

Again data appears back and forth!!

Hacked evidence (with MAP) = L2 or L1 regularization

With great overfitting comes great regularization!



Bayesian inference

Bayesian no-doubt case

The hacked-belief approach

The best belief after seeing the data

maximum a posteriori (estimator) = argmax
B

P (D|B,M)P (B|M) = B̂

Hacked evidence︷ ︸︸ ︷
P (D|M) =

Hacked likelihood︷ ︸︸ ︷
P (D|B̂,M) =

Likelihood at maximum a posteriori︷ ︸︸ ︷
P (D
↑
|argmax

B
P (D
↑
|B,M)P (B|M),M)

Again data appears back and forth!!

Hacked evidence (with MAP) = L2 or L1 regularization

With great overfitting comes great regularization!



Bayesian inference

Bayesian no-doubt case

The hacked-belief approach

The best belief after seeing the data

maximum a posteriori (estimator) = argmax
B

P (D|B,M)P (B|M) = B̂

Hacked evidence︷ ︸︸ ︷
P (D|M) =

Hacked likelihood︷ ︸︸ ︷
P (D|B̂,M) =

Likelihood at maximum a posteriori︷ ︸︸ ︷
P (D
↑
|argmax

B
P (D
↑
|B,M)P (B|M),M)

Again data appears back and forth!!

Hacked evidence (with MAP) = L2 or L1 regularization

With great overfitting comes great regularization!



Bayesian inference

Bayesian no-doubt case

The hacked-belief approach
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For more regularization techniques for hacked-belief approach see
Zivik talk. With great complexity comes great regularization

http://bit.ly/slides_regularizacion
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Bayesian no-doubt case

The hacked-belief approach

Is there any data science metrics equivalent to evidence?

Evidence︷ ︸︸ ︷
P (D|M) ∝ logP (D|M) = log

|D|∏
i=1

P (Di|M)

 =

|D|∑
i=1

logP (Di|M)

∝ 1

|D|

|D|∑
i=1

logP (Di|M) = Ep [logP (D|M)]
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