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AVOIDING MODEL SELECTION IN 
BAYESIAN SOCIAL RESEARCH 

Andrew Gelman* 
Donald B. Rubint 

1. INTRODUCTION 

Raftery's paper addresses two important problems in the statistical 
analysis of social science data: (1) choosing an appropriate model 
when so much data are available that standard P-values reject all 
parsimonious models; and (2) making estimates and predictions 
when there are not enough data available to fit the desired model 
using standard techniques. 

For both problems, we agree with Raftery that classical fre- 
quentist methods fail and that Raftery's suggested methods based on 
BIC can point in better directions. Nevertheless, we disagree with his 
solutions because, in principle, they are still directed off-target and 
only by serendipity manage to hit the target in special circumstances. 
Our primary criticisms of Raftery's proposals are that (1) he prom- 
ises the impossible: the selection of a model that is adequate for 
specific purposes without consideration of those purposes; and (2) he 
uses the same limited tool for model averaging as for model selec- 
tion, thereby depriving himself of the benefits of the broad range of 
available Bayesian procedures. 

Despite our criticisms, we applaud Raftery's desire to improve 
practice by providing methods and computer programs for all to use 
and applying these methods to real problems. We believe that his 
paper makes a positive contribution to social science, by focusing on 
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hard problems where standard methods can fail and exposing failures 
of standard methods. 

2. TOO MUCH DATA, MODEL SELECTION, AND THE 
EXAMPLE OF THE 3 x 3 x 16 CONTINGENCY TABLE WITH 

113,556 DATA POINTS 

There is no such thing as "too much data," but it is possible to have 
so much data that a test will reject every parsimonious model that is 
proposed. Raftery gives an example in his Section 2.2 of a 3 x 3 x 16 
contingency table with 113,556 observations to which several models 
are fit; all but the saturated model are soundly rejected by the X2 test. 
The real problem in this example is not that the simpler models are 
rejected-after all, one would not expect them to fit social reality 
exactly-but that X2 test results give no useful guidance for (1) select- 
ing an incorrect but parsimonious model to convey sociological in- 
sight, and (2) deciding whether the lack of fit of a parsimonious 
model is a problem in practice. 

In order to conduct social science, it is important to use real- 
world information in the form of (1) scientific theories, prior informa- 
tion, etc., and (2) knowledge of the purposes to which the analysis 
will be put. Although modeling data can usefully be done using only 
the first component, both components of information are needed to 
do model selection. 

The issue is, as Raftery notes, the distinction between statisti- 
cal and practical significance. There are two sources of predictive 
variability in any model: (1) inherent variance in the model (e.g., 
Poisson or multinomial variation in a contingency table model, or 
residual normal variance in a regression model), and (2) uncertainty 
due to estimation variability and inaccuracies of the model. If the 
first source of error is much larger than the second for the kind of 
predictions one has in mind, it can be acceptable to use a model even 
if one can detect that it does not fit the data. For example, we have 
no problem accepting Raftery's claim that the quasi-symmetry is 
useful to Grusky and Hauser because: (1) it "explains most (99.7 
percent) of the deviance," (2) "the differences between observed and 
expected counts are a small proportion of the total," and (3) it 
"makes good theoretical sense." But this claim must be predicated 
on the uses to which the quasi-symmetry model will be put. For 
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making global predictions, the quasi-symmetry model's lack of fit 
relative to the saturated model is swamped by inherent multinomial 
variation, and thus is arguably irrelevant. 

In contrast, if, we were interested in the way that the countries 
differ from the typical pattern implied by quasi-symmetry, it would 
behoove us to move to a more complicated model that fits the data 
better. The rejection by the x2 test is telling us something: the quasi- 
symmetry model does not fit the data; the low P-value means that if 
the model were true, it would be extremely unlikely for such a poor 
fit to occur. If the X2 test did not have an extreme P-value (for 
example, if the deviance were 20-instead of 150-on 16 degrees of 
freedom), this would suggest that there is limited information in this 
dataset for measuring differences from the quasi-symmetry model. 

A social scientist's happiness with quasi-symmetry follows 
from its pleasing theoretical properties and the realization that its 
lack of fit to the data is not substantively significant for a class of 
questions of interest (e.g., global predictions). The social scientist 
need not claim that quasi-symmetry is "better" than the saturated 
model; it is enough to say that quasi-symmetry explains 99.7 percent 
of the variation in the data that can be explained by the saturated 
model, and that the misfit 0.3 percent is not in a substantively impor- 
tant direction for a broad class of questions. Raftery writes in Section 
6.1 that "Grusky and Hauser decided to ignore the P-value." Rather 
than ignoring the reality that the model does not fit the data, we 
would rather admit to using an inexactly fitting model because of its 
convenience, scientific insights, and general explanatory power for 
questions we intend to address using it. Nothing needs to be ignored! 

Raftery's BIC cannot work, in principle, because it purports to 
deliver the impossible: a rationale for selecting a model that does not 
fit the data (e.g., quasi-symmetry in the Grusky-Hauser example) 
over a model that does fit (e.g., the saturated model), based on the 
data and theory alone, without consideration of the questions the 
model will be used to address. This claim for BIC makes no logical 
sense, because it attempts to express a concept of "this model is 
acceptable for our present purposes" in terms of a single probability 
statement that is blind to what those purposes are. 

Then what principled method could lead us to conclude that the 
quasi-symmetry model is adequate for the intended purposes of 
Grusky and Hauser? It would make sense to summarize the analysis 
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using the quasi-symmetry results and also the residuals from quasi- 
symmetry. A decision that the quasi-symmetry model is acceptable for 
scientific purposes can be based on a scientific judgment that the 
residuals are small, relative to the size of effects of scientific interest. 
More generally, deviations from a model can be compared to their 
posteriorpredictive distribution, a Bayesian generalization of the refer- 
ence distribution used for classical P-values (Rubin 1981, 1984). Here, 
a Bayesian analysis of a posited model (e.g., quasi-symmetry) is used 
to generate hypothetical replicates of the data under their posterior 
predictive distribution. If the replicates are "close enough" to the 
actual data with respect to some measures of discrepancy that reflect 
the purposes of the analysis, then the posited model is adequate for 
these purposes. A general discussion of posterior predictive checks is 
given by Gelman, Meng, and Stern (1995), and applications to social 
science data include Rubin's (1981) analysis of educational testing 
experiments and Rubin and Stern's (1994) analysis of latent class 
models in psychology. 

3. HOW CAN BIC SELECT A MODEL THAT DOES NOT FIT 
THE DATA OVER ONE THAT DOES? 

In the last sentence of his Section 3, Raftery implies that the model 
with higher BIC will be expected to yield better out-of-sample predic- 
tions than any other model being compared. This implication is not 

generally true; there is no general result, either applied or theoreti- 
cal, that implies this. For example, under Raftery's particular im- 

plicit assumptions, the quasi-symmetry model is more probable, but 
what does it mean for one model to be more probable than another, 
larger model when the data show that the smaller model is false? In 
this example, if predictive accuracy is measured by mean squared 
error, the saturated model is expected to predict slightly better than 

quasi-symmetry. 
For a simpler example that conveys insight into the implicit 

assumptions underlying BIC, consider the problem of adding a single 
parameter to a normal linear model, as discussed in Raftery's Sec- 
tions 4.3 and 4.4. For simplicity we consider the one-dimensional 
problem, with data yi, . . . , y, independent observations from a 
normal distribution with mean 0 and variance 1. Consider the sce- 
nario with a large amount of data, n = 100,000, where the mean of 
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the observations, y, is 0.01-a small value, but 3.16 standard errors 
from zero (the standard error is 1//n). The P-value of this observa- 
tion is 0.0016; it is extremely unlikely that data this or more extreme 
would be observed if 0 = 0. The value of the BIC, on the other hand 
(see Raftery's equation 27), is 3.162 - log(100,000) = -1.51, imply- 
ing that the probability that 0 = 0 is 1/(1 + exp(-1.51/2)) = 0.68, 
despite the fact that the hypothesis 0 = 0 is contradicted by the data. 
In contrast, the correct inference with any relatively diffuse prior 
distribution on 0 is that 0 is small but nonzero; more precisely, the 95 
percent interval is [0.01 ? 1.96 * 0.0032], which easily excludes zero. 
Recall the discussion of our Section 2: the simpler model may be 
acceptable if the deviation of the data from the model is small, but 
this does not mean that the simpler model is "true." How can BIC 
conclude that 0 = 0 is the better model? The answer lies in the 
implicit improper prior distribution on 0 that is assumed by BIC-a 
mixture of a point mass at 0 = 0 and a uniform density on the real 
line. We use the term "proper prior distribution" in its technical 
sense to mean a distribution for the parameter that integrates to 1 
and does not depend on the data. When data contradict a Bayesian 
posterior distribution, there is something wrong with the modeling 
assumptions (or the data), and the posterior distribution should not 
be trusted. 

4. NOT ENOUGH DATA, MODEL AVERAGING, AND THE 
EXAMPLE OF REGRESSION WITH 15 EXPLANATORY 

VARIABLES AND 47 DATA POINTS 

When the number of parameters in a model is large relative to the 
number of data points, it is well known that Bayesian approaches, 
which assign a prior distribution to the parameters in the model, can 
yield parameter estimates and predictions that are better from the 
frequentist perspective (e.g., James and Stein 1960; Efron and Mor- 
ris 1971, 1972). Different estimation procedures correspond to differ- 
ent prior distributions; for example, "ridge regression" corresponds 
to a normal prior distribution on the coefficients in a regression 
model. Raftery's "Occam's window" implicitly corresponds to a 
prior distribution for each regression coefficient that is a combina- 
tion of a point mass at zero and a uniform prior distribution on (-o0, 
oc)-scientifically a peculiar model. This model will work well in 
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situations in which this prior distribution is a good approximation to 
reality. For instance, the artificial examples discussed in Raftery's 
Sections 2.3 and 6.2 are ideal matches for his prior distribution, with 
all or almost all the regression coefficients defined to be exactly zero; 
consequently Raftery's method works well there. 

More generally, realistic prior distributions in social science do 
not have a mass of probability at zero. For example, consider the 
real-data crime-rate example discussed in Sections 2.4 and 6.3. The 
difficulties in this example arise entirely from the small sample size. 
If we somehow had 100,000 data points and 15 predictors, there 
would be no question that we should include all 15 predictors in the 
regression model, because in this example, Raftery's goal is to pro- 
duce accurate coefficient estimates, not a parsimonious model as in 
the Grusky-Hauser example. Any reasonable method, including step- 
wise regression, will ultimately include all the variables for such a 
problem if the sample size is large enough. 

We agree with Raftery that, in this case, the scientific ques- 
tions are answered by the estimated coefficients and their posterior 
distributions-not by their "statistical significance." We also agree 
that, if a discrete set of models is being fit to a dataset, it is better to 
average over the models than to pick just one; the latter procedure 
leads to confidence intervals that are consistently too narrow. For 
both reasons, we find Raftery's analysis preferable to that obtained 
by stepwise regression. An even better approach would be to set up a 
more realistic model on the coefficients, which would be facilitated 
by transforming some of the predictors; for example, labor force 
participation rate could be per adult male under 65, police expendi- 
tures and GDP could be per capita, and the two unemployment rates 
could be recoded as an average and a difference. Moreover after 
such transformations, a hierarchical model might be more compel- 
ling. In his reliance on BIC, Raftery is limiting himself to a very 
narrow range of peculiar models. 

But the largest gains in this example should come from else- 
where. It's not "cheating" to use real-world knowledge if you're actu- 

ally interested in real-world answers. We see no reason to trust the 
results of any analysis of the 1960 Ehrlich data alone for any questions 
of long-term social interest. The right thing to do, obviously, is to 
obtain more data, especially in a problem such as this in which the cost 
of gathering data seems to be so little: why analyze data only from 
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1960 (an especially odd choice considering that Ehrlich's paper is 
dated 1973)? With data from several years, the difficulties of sepa- 
rately estimating 15 regression coefficients essentially vanish. For ex- 
ample, Campbell (1992) estimates a regression model for election 
forecasting that has over 15 predictor variables by using state-level 
data from several presidential elections; also see Gelman and King 
(1993) for discussion of the political context and Boscardin and 
Gelman (1995) for a full Bayesian analysis of this example. With 
several years of data, regression coefficients can be pooled or partially 
pooled across years (in the same way that coefficients are partially 
pooled across schools in Rubin 1980) using Bayesian methods. Other 
useful steps would be disaggregating the data (e.g., by race, sex, and 
age) and building an appropriate hierarchical model. Certainly, 
whether or not this extra information has been obtained, we would not 
want to restrict analyses to the particular model implied by BIC. 

5. CONCLUSION 

So far, we have said almost nothing about model selection, despite 
the title of Raftery's paper. That is because we believe model selec- 
tion to be relatively unimportant compared to the task of construct- 
ing realistic models that agree with both theory and data. In most 
cases, we would prefer to fit a complicated model, probably using 
Bayesian methods-but not BIC-and then summarize it appropri- 
ately to answer the substantive questions of interest. 

In addition to our disagreements with Raftery about model 
selection in applied social research, we have some specific theoreti- 
cal criticisms about his presentation of BIC as "the Bayesian ap- 
proach to hypothesis testing, model selection, and accounting for 
model uncertainty." The Bayesian approach is a general one, which 
we advocate (Gelman, Carlin, Stern, and Rubin 1995), and it is 
important to recognize that there is no single Bayesian solution to a 
statistical problem. Bayesian approaches to the problems posed by 
multiple models include exact Bayes factors using proper prior dis- 
tributions; embedding individual models in continuous parameter- 
izations;1 multilevel hierarchical modeling (see Bock 1989 for some 

'To illustrate with a simple example from our own research, Boscardin 
and Gelman (1995) fit a parametric model of heteroscedasticity that includes 
unweighted and weighted linear regression as two extreme special cases. A 
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examples in educational research); and posterior predictive checks, 
in which models are compared not by posterior probabilities but 
rather by their predictive accuracy for intended purposes (see Ru- 
bin 1984; Gelman, Meng, and Stern 1995). 

Moreover, BIC cannot be construed as an approximation to 
any exact Bayesian solution, even a Bayes factor. In models with 
improper prior distributions (which include all the examples in Raf- 
tery's paper), the Bayes factor is, in fact, undefined! Equation (7) 
becomes 0/0. This is a serious problem, and it has attracted some 
interest in the theoretical Bayesian literature (see Spiegelhalter and 
Smith 1982 for a discussion of the problem). In Raftery's presenta- 
tion, this comes as a term of order 1-"0(1)" in equation (16). It is 
implied that this is not a problem for large n, but there is another 
hidden assumption-that this is a fixed number, with some mathe- 
matical definition. The mathematics of Raftery's Section 4 obfuscate 
the key fact that BIC is not an approximation but a definition, which 
helps to explain why no exact Bayes factors are computed anywhere 
in Raftery's article. Raftery is too casual with the use of improper 
prior distributions across models of differing dimensions. 
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